RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, JUNE 2022

THIRD YEAR (BATCH 2019-22)

Date : 16/06/2022 Time : 11.00 am - 1.00 pm MATHEMATICS (Honours) Paper : XIII [CC13]

Full Marks : 50

Answer <u>any five</u> questions: [5×10]			
1.	a)	Deduce Newton's backward interpolation formula. When the formula is applicable?	4+1]
	b)	Find the error in general form for polynomial interpolation.	[5]
2.	a)	Find the numerical differentiation formula based on Lagrange's interpolation.	[5]
	b)	Establish Simpson's Three-Eighth Rule for numerical integration.	[5]
3.	a)	Find the Inherent error in Simpson's one-third rule for numerical integration.	[5]
	b)	Discuss fixed point iteration method for finding a simple root of $f(x) = 0$.	[5]
4.	a)	Establish Newton-Raphson method for finding a simple root of $f(x)=0$. Why is this method	
		called method of tangents?	6+1]
	b)	Show that the order of convergence of Newton-Raphson method for finding a simple root of $f(x)=0$ is 2.	[3]
5.	a)	Discuss with example :	
	i)	Round-off error ii) Truncation error	[4]
	b)	Using Gauss Jordan method solve	
		$x_1 + 3x_2 + 2x_3 = 1$	
		$x_1 + 2x_2 + 3x_3 = 2$	
		$2x_1 - x_2 + 4x_3 = 3$	
			[6]
6.	a)	Solve $\frac{dy}{dx} = x - y$ with $y = 1$ at $x = 0$ for the interval $I = \begin{bmatrix} 0, \frac{3}{4} \end{bmatrix}$ using Runge-Kutta fourth order	
		method with step length $h = 0.25$, correct upto 3 significant figures.	[7]
	b)	Calculate $y(0.25)$ for the above problem using modified Euler method with same h.	[3]
7.	a)	Find a bound on the truncation error committed while taking $e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$ in the	
		interval [-1,1].	[3]
	b)	Find the eigen value with largest magnitude for the matrix	
		$A = \begin{vmatrix} 3 & 9 & 15 \end{vmatrix}$ using power method.	[7]
		$\begin{bmatrix} 4 & 16 & 36 \end{bmatrix}$	

8. a) Use Gauss-elimination method to solve

 $2x_1 + 3x_2 + x_3 = 9$ $x_1 + 2x_2 + 3x_3 = 6$ $3x_1 + x_2 + 2x_3 = 8$ correct upto 2 significant figures. [7] b) Compare Gauss-Seidel method with Gauss-Jacobi method. [3]

_____× _____